A study published in BMJ, which coincided with the World Health Organization SAVE LIVES: Clean Your Hands campaign on the 5 May 2012, reveals that the campaign played a significant role in reducing rates of some healthcare associated infections in hospitals across England and Wales.

The purpose of the study was to evaluate the impact of the Cleanyourhands campaign on rates of hospital procurement of alcohol hand rub and soap, report trends in selected healthcare associated infections, and investigate the association between infections and procurement.

Bedside alcohol hand rub, materials promoting hand hygiene and institutional engagement, regular hand hygiene audits, were installed from 1 December 2004 and rates for each trust of hospital procurement of alcohol hand rub and liquid soap and levels of Staphylococcus aureus bacteraemia (meticillin resistant (MRSA) and meticillin sensitive (MSSA)) and Clostridium difficile infection for each trust was obtained.

The results found that combined procurement of soap and alcohol hand rub tripled from 21.8 to 59.8 mL per patient bed day; procurement rose in association with each phase of the campaign. Rates fell for MRSA bacteraemia (1.88 to 0.91 cases per 10,000 bed days) and C difficile infection (16.75 to 9.40 cases); however, MSSA bacteraemia rates did not fall.

Increased procurement of alcohol hand rub was independently associated with reduced MRSA bacteraemia, but only in the last four quarters of the study and the publication of the Health Act 2006 was strongly associated with reduced MRSA bacteraemia.

The study concluded that the Cleanyourhands campaign was associated with sustained increases in hospital procurement of alcohol rub and soap, which the results suggest has an important role in reducing rates of some healthcare associated infections. National interventions for infection control undertaken in the context of a high profile political drive can reduce selected healthcare associated infections.

A spokesman for NHS Grampian said in a report: “The letter reassures patients that the risk of infection is low. However, any patient who remains concerned can contact NHS 24 helpline 08000 28 28 16 between 8.00am and 10.00pm where they can get further advice about health concerns including for hepatitis B, C and HIV.

“Letters have been sent to patients registered at the independent practice between January, when it opened, and 10 April, the date of a follow up inspection which found infection control procedures were satisfactory and now followed national standards.”

She added: “Dr Xenofon Gkouzis is the only dentist now working in the practice. He is registered in the UK with the General Dental Council and is authorised to treat NHS patients in Grampian. This incident is not related to him.”

Dr Maria Rossi, consultant in Public Health Medicine at NHS Grampian, said: “We are working closely with local and national experts and have concluded there is a low risk of infection to patients. As our priority is always for the safety and welfare of patients, we felt it was important to write to inform them of this incident. The letter emphasises that no action is required by the patient, but tests will be available if anyone remains concerned having read the letter and after calling the helpline.”

Ray Watkins is Consultant in Dental Public Health at NHS Grampian. He added: “While this is an independent practice, it is expected to comply with national infection control standards. We are unable to confirm that these standards were adhered to prior to April 10 when at a follow-up visit, procedures were found to be satisfactory.

“The practice has co-operated with the investigation, and will continue to be monitored.”
By now, all dental practices must comply with the essential requirements of Health Technical Memorandum 01-05 Decontamination in Dental Practice (aka HTM 01-05). If they do not, they are in breach of CQC Regulation 12, Outcome 8. HTM 01-05 was produced (in the words of the Department of Health) “in response to emerging evidence around the effectiveness of decontamination in primary care dental practices and the possibility of prion transmission through protein contamination of dental instruments.”

In brief, the essential requirements of HTM 01-05 are that:

- Regardless of the technology used, the cleaned instruments, prior to sterilisation, should be free of visible contaminants when inspected with a magnification device. Instruments should be reprocessed using a validated decontamination cycle including; cleaning/washing (in terms of manual cleaning, this includes having a written protocol, a validated steam steriliser, and at the end of the reprocessing cycle they should be in a sterilised state).
- Reprocessed dental instruments should be stored in such a way as to ensure restraint of microbiological re-colonisation. These measures should be backed by careful controls on the storage times to which instruments that are less frequently used are subject.
- Practices should review their decontamination processes quarterly using an audit tool (the use of the Infection Prevention Society/DH audit tool that accompanied the document was strongly recommended).
- Practices should have in place a detailed action plan on how the provision of decontamination services will move towards best practice. Continue raising clinical governance awareness.

Considering that last bullet point in more detail, it is implicit in the guidance that merely meeting the essential requirements of HTM 01-05 is not an end in itself. Instead, practices should continue moving forward with decontamination and aim towards best practice – effectively shooting at ever narrowing goalposts.

By definition, I cannot tell you in detail what best practice is. It will continue to evolve over time as more effective processes are discovered and as better decontamination equipment is produced. Also, you may be close to achieving best practice now or you could be a long way off it. In moving towards best practice, you may wish to consider some or all of the following upgrades to your practice:

- The use of an automated (HTM 01-05) washer-disinfector
- Separate facilities for decontamination clearly separated from the clinical treatment area. This implies the use of a separate room or rooms which should be used for the purpose of decontamination only and to which access should be restricted to those staff performing...
Decontamination best practice

To keep abreast of decontamination best practice, I suggest you link up with your PCT, that you always read Dental Tribune and Infection Control Tribune and that you keep an eye on dentistry websites. Also, check out the decontamination equipment manufacturers for new products, liaise with dentistry colleagues and visit the appropriate trade and association stands at shows.

An action plan for best practice

Decontamination best practice cannot simply be a wish list – you need to draw up an action plan for achieving it. At the moment, no timescales have been set for practices to achieve best practice. This makes developing an action plan with targets as to when things will be achieved rather tricky. Bear in mind that you will, at some stage, need to show this action plan to a member of your PCT and talk them through it – so it needs to be based on sound thinking, not guess work.

Let’s take the example of separating decontamination rooms. There are many dental practices that use the same room for patient treatment and decontamination and this meets HTM 01-05 essential requirements at this time. The principals or owners of these practices need to decide how they can work towards a separate and controlled decontamination room (or clean/dirty rooms). If it’s merely a question of utilising an unused room or erecting partitions, the timescale for achieving it could be relatively short and will depend on when the finance is likely to be available.

In, for example, a listed building or premises where you are already short of space, the only solutions may be to move or rent/purchase additional premises. Clearly, this will likely be a longer-term aim.

For something a little easier to build into your action plan, consider the purchase of washer-disinfector. You will need to investigate what models are available, which will be most suitable, how much it will cost and what the installation requirements area. You will also need to consider how, where and when your staff can be trained to use it and how much this will cost. They may well also need training in the use of instrument rotation systems and working in a designated decontamination room.

Although you should check whether your PCT has funds available for the purchase of washer-disinfectors, in England there was no central funding for meeting HTM 01-05 essential requirements and there is certainly none at this time for moving towards decontamination best practice. By contrast, the Scottish Government has made funds available for decontamination improvements, for the maintenance of decontamination equipment and even provided grants for when a practice needs to relocate.

Sample test processes and procedures to evidence the level of compliance

Finally, don’t forget to maintain the daily and weekly decontamination best practice. By contrast, the Scottish Government has made funds available for decontamination improvements, for the maintenance of decontamination equipment and even provided grants for when a practice needs to relocate.
“Sterile” does not mean clean and safe
Dr Mikael Zimmerman discusses disinfection

Most equipment-associated infection is due to inadequate cleaning and disinfection. The most effective stage of any decontamination procedure is thorough cleaning.

Medical devices heavily loaded with microbiological material will be more difficult to sterilise than one lightly contaminated and must therefore be thoroughly cleaned to reduce organic material or biofilm before disinfection and sterilisation. Washer-disinfectors are the safest and most reliable option.

Cleaned and disinfected instruments should be carried out as soon as possible after use. Dried biological material is much more difficult to remove than fresh deposits. Blood, with its content of iron, acid and sodium chloride, is corrosive.

The type B-cycle
Sterilisation is defined as the use of a physical or chemical procedure to destroy all microbial life, including large numbers of highly resistant bacterial endospores. The sterility requirement for medical products means that the theoretical probability that a living organism will be present on an object after the sterilising process is equal to or less than one in a million, so-called Sterility Assurance Level (SAL) = 10^-6. Sterility may be achieved by various methods: heat, chemical and ionising radiation. The simplest method is heat sterilisation. There are two methods: dry heat sterilisation, i.e. use of dry heat usually a hot air oven or autoclaving, in which moist heat (steam) is used.

Regardless of the method, the result of sterilising procedures depends on the number of microorganisms and other biological material present on the article before inactivation and the resistance of microorganisms to the sterilisation process. The result of steam sterilisation is also influenced partly by the kind of material the items are made of, and partly by the shape of the items. It is important to note that packaging material itself is a porous load (paper, textiles) and should be handled as such. All packaged/wrapped goods require sterilising in steam-autoclave processes with pre- and post-vacuum cycles.

Another factor which influences the result of the sterilising procedure is the way in which the chamber is loaded as well as whether the items are packaged and the shape of the package. The goods should not be tightly packed: the steam must be allowed to penetrate all parts of the goods. Residual moisture in the packaging material after sterilisation will act as a potential pathway for microorganisms to penetrate the package.

Steam sterilisation
Saturated steam under pressure is by far the quickest, safest and most efficient and most reliable medium, known for the destruction of all forms of microbial life. The brief exposure to steam destroys the most resistant bacterial species and heat is rapidly achieved because of mass heat transfer as the steam condenses.

In order for the steam to condensate within the whole load to be sterilised, virtually all air must be evacuated during pre-treatment. This can only be achieved with several (at least three (3)) pre-vacuum pulses. So-called B-cycle in accordance with EN 13060.

In steam sterilisers with pre- and post-vacuum processes (ie B-cycle), the sterilisation process is composed by three main phases: pre-treatment, sterilising and post-treatment. During pretreatment the air is expelled by a number of pulses of vacuum and the introduction of steam. The temperature increases successively, up to the degree at which sterilising is to take place. The actual sterilisation period, which is called holding time, starts when the temperature in all parts of the autoclave chamber and its contents (the load) have reached the sterilising...
temperature. The temperature should then remain constant, within specified temperature band, throughout the whole sterilisation phase (plateau/holding time). In the post-treatment phase, either the steam or the re-vaporised condensed water are removed during cleaning, ultrasonic bath and washer disinfectors or in the ultrasonic bath and/or washer disinfectors as well as steriliser. The heat energy of the ultrasound waves in the ultrasonic bath and/or the water in a dish washer or washer disinfectors as well as the saturated steam from the steriliser shall be concentrated on the instruments that are to be processed. A load that is too heavy lessens the effect of disinfection and sterilisation.

The steam sterilisers that are most frequently used in dental clinics are adapted to loads of 3.0–3.5 kilos. A stainless steel tray for endodontic procedures has a weight of approximately 1.5–1.7 kilos! This will be an important issue to consider when using trays made out of different materials such as textiles and hollow items.

Steam sterilisation of hollow instruments (with long, narrow lumina) and porous objects always requires several (at least three) pre-vacuum pulses to a defined, pre-set, vacuum level.

Fewer instruments, better control

The type of equipment and the type of procedures in use at the clinic will to a very high extent determine the safety margin of decontamination. A very important issue, that is often foreseen, is the logistics of instruments. A common problem in many dental offices is an overload of instruments, which will contribute to a more difficult and time demanding procedure to keep track of all instruments and to make sure that storage and sterile as well as packaging/wrapping conditions are maintained.

An item heavily loaded with microbiological material will be more difficult to sterilise than one lightly contaminated. The most effective stage of any decontamination procedure is thorough cleaning and this should accompany or precede all disinfection procedures. The effect of cleaning, disinfection and sterilisation is affected by the design of the cassettes/trays being used. Shadow effects may easily ensue from the use of solid cassettes so that instruments are not being properly cleaned, neither in washer disinfectors nor in ultrasonic bath.

Fastened but free

Instruments should be free and fastened on trays so that ultrasonic waves, water jets and steam can reach every part to clean and inactivate efficiently during the whole procedure of disinfection and sterilisation. Even if fastened the instruments must be free and have no contact points/areas with the locking device.

An area of contact will not be properly cleaned and disinfected.

Two different metals will cause corrosion. Corrosion is a common problem. When in the same fluid, instruments and other articles made of different metals may corrode, and corrosion destroys sharp and delicate instruments. Corrosion pits will also make the surface rough, which increases the possibility of microorganisms to attach themselves to the instruments. Mixing different types of metal in a liquid solution will result in an electro-chemical cell and cause corrosion – this is often the case during cleaning, ultrasonic bath and washer disinfectors when using aluminium trays and instruments in stainless steel or when cleaning carbon burs and burs made of stainless steel in the same liquid container. However, in daily dentistry we call this rust and blame the manufacturer for poor material – the actual problem is clinical routines!

Don’t make it too heavy

Metallic weight is another decisive in decontamination and sterilisation. The heat energy from the ultrasonic waves in the ultrasonic bath and/or the water in a dish washer or washer disinfectors as well as the saturated steam from the steriliser shall be concentrat ed on the instruments that are to be processed. A load that is too heavy lessens the effect of disinfection and sterilisation.

The steam sterilisers that are most frequently used in dental clinics are adapted to loads of 3.0–3.5 kilos. A stainless steel tray for endodontic procedures has a weight of approximately 1.5–1.7 kilos! This will be an important issue to consider when using trays made out of different materials such as textiles and hollow items.

Steam sterilisation of hollow instruments (with long, narrow lumina) and porous objects always requires several (at least three) pre-vacuum pulses to a defined, pre-set, vacuum level.

Fewer instruments, better control

The type of equipment and the type of procedures in use at the clinic will to a very high extent determine the safety margin of decontamination. A very important issue, that is often foreseen, is the logistics of instruments. A common problem in many dental offices is an overload of instruments, which will contribute to a more difficult and time demanding procedure to keep track of all instruments and to make sure that storage and sterile as well as packaging/wrapping conditions are maintained.

An item heavily loaded with microbiological material will be more difficult to sterilise than one lightly contaminated. The most effective stage of any decontamination procedure is thorough cleaning and this should accompany or precede all disinfection procedures. The effect of cleaning, disinfection and sterilisation is affected by the design of the cassettes/trays being used. Shadow effects may easily ensue from the use of solid cassettes so that instruments are not being properly cleaned, neither in washer disinfectors nor in ultrasonic bath.

Fastened but free

Instruments should be free and fastened on trays so that ultrasonic waves, water jets and steam can reach every part to clean and inactivate efficiently during the whole procedure of disinfection and sterilisation. Even if fastened the instruments must be free and have no contact points/areas with the locking device.

An area of contact will not be properly cleaned and disinfected.

Two different metals will cause corrosion. Corrosion is a common problem. When in the same fluid, instruments and other articles made of different metals may corrode, and corrosion destroys sharp and delicate instruments. Corrosion pits will also make the surface rough, which increases the possibil-
Luxator Extraction Instruments are now the preferred method of performing extractions

Luxator Extraction Instruments were invented by a Swedish dentist to make extractions as trauma free as possible. He developed subfiles in the design only a practising dentist would appreciate with an acclaimed and ergonomic handle design. For this reason our Luxator instruments are discernably different.

Fig 11 Evaluation of the handling of instruments with effective tray system has shown substantially reduced time.

Fig 12 Rationalisation of the handling of instruments is a good way to improve practice economy and quality.

 punched

The time in need for handling sterile goods can be reduced, usually to half the time.

Good control of and minimising the number of instruments and materials result in less costs and gives the conditions of safer handling, decontamination and disinfection.

A tray system should facilitate the handling of instruments through the whole hygienic circle. Evaluations of effective tray systems have shown reduced time for handling the instruments at disinfection and sterilisation.

Rationalisation of the handling of instruments during all parts of work - from preparation to sterile keeping - gives the staff liberty to work with quality improvement and to take a greater part in the treatment of patients. Rationalisation of the handling of instruments is thereby a good way to improve practice economy.

About the author
Dr Michael Zinnerman is one of the founding members of AESIC, a branch of the European Union of Safety and Infection Control in Dentistry. He is also a member of the subgroup for dental professionals within Strama - the Swedish strategic programme against antibiotic resistance.

Often instruments made of stainless steel are supposed to be extremely strong and fit for using for almost any amount of time. But the truth is that all kinds of instruments can be harmed both by mechanical, thermal and chemical influences. Dental instruments often consist of different parts and of different kinds of metals and alloys, even in the same instrument.

It is important to maintain the tenability of the instruments with careful handling. They are not to be thrown in the process of decontamination. The instruments should be processed in trays, holders or stands so as not to clash against each other. They should also be in contact with each other as little as possible when washed, disinfected and sterilised.

Reduce the number of articles and save time and money. To have fewer instruments in use means that it will be easier and safer to locate goods that should be re-sterilised and re-disinfected and that there will always be current information on which instruments that are needed in the surgery.

Higher security will be a result from always having the right materials and instruments in the treatment area.

The most efficient trays, from disinfection and sterilisation standpoint will be trays/cassettes made out of a non-heat absorbing, non-heavy and non-corrosion causing material.

Tray-prep increases efficiency and security
To organise the logistics and handling of instruments requires a lot of time, and unfortunately few clinics take that time to go through these processes.

To obtain a flow of instruments as secure and efficient as possible, the use of a system as complete as possible is recommended.

The first thing to do to ameliorate the logistics of instruments and materials in the clinic is to minimise the number of instruments in the treatment area. Tray systems facilitate the flow of instruments and goods the whole way between treatments, via sterile area, to storing. With a carefully planned tray system you can handle the tray, the accessories and the instruments (products) as one unit throughout the whole process of work.

Tray systems and “tray-prep-stations” facilitate the handling of goods. A good tray system with practical tray accessories and carefully planned hygiene routines facilitates the flow of materials. Unstructured handling of instruments results in losing valuable time and heightens the risk of reducing security and disregarding aseptics.

Secure handling of instruments also leads to minimising prick and puncture wounds, at the same time as simplifying the inspection of instruments. It also means that single use materials and hazardous waste can be easily removed and thrown into a lidded waste bin, if using a tray-prep-station in the surgery.

Stands for burs and endofiles – a hidden problem
Stands for burs and endofiles are very often a hidden problem in the clinic. A simple solution to the problem is to use one standard kit that is in use during the whole process of work and the whole hygiene circle. Pre-prepared trays with all instruments in place also minimises the process time between patients.

Stainless steel is not forever
Dental metal instruments are for the most made by high quality stainless steel with high elasticity and high stretch. The material has high resistance against wear and corrosion. All of these capacities can be negatively influenced by erroneous handling of the instruments, particularly in connection with cleaning, disinfection and sterilisation.

The material has high elasticity and high stretch. The material has high resistance against wear and corrosion. All of these capacities can be negatively influenced by erroneous handling of the instruments, particularly in connection with cleaning, disinfection and sterilisation.
Infection control is continually neglected in dental education

,**DTT’s Ben Adriaanse interviews Dr Hans de Soet, microbiologist and expert in infection control**

In 2009, a group of microbiologists established the Association for European Safety & Infection Control in Dentistry (AESIC), an organisation that promotes European collaboration for shared knowledge and uniform legislation on infection control and dental hygiene. This March, AESIC and ACTA, an academic centre for dental education in the Netherlands, organised a conference in Amsterdam with the theme Harmonising dental infection prevention guidelines in Europe. During the conference, steps were taken towards establishing a collaborative working group to collect and share dental infection control guidelines in Europe. Dental Tribune Netherlands spoke with Dr Hans de Soet, microbiologist and expert in infection control at ACTA, and chairperson of the event.

Dental Tribune Netherlands: Dr De Soet, what are your thoughts on the conference in Amsterdam?

Dr Hans de Soet: It was a successful conference. At last year’s European Oral Microbiology workshop, we sensed a need for harmonisation in dental hygiene and infection control. Apparently, there are substantial regulation differences among European countries: in some, these regulations are set up as laws, while in other countries they are merely stipulations. The way in which these guidelines are enforced also varies.

I did not observe any fundamental differences. There are, of course, some minor variations. For example, in some countries gloves can be used more than once. Generally, though, the regulations are quite similar. In Scandinavia, dentists are obligated to record their activities concerning infection control according to 10 stipulations. Each requires a separate record, such as “equipment validation”.

In Scandinavia, dentists are obligated to record their activities concerning infection control according to 10 stipulations. Each requires a separate record, such as “equipment validation”. This seems practical and logical, but is not the case everywhere. For example, in some countries gloves can be used more than once. Generally, though, the regulations are quite similar.

In 2009, a group of microbiologists established the Association for European Safety & Infection Control in Dentistry (AESIC), an organisation that promotes European collaboration for shared knowledge and uniform legislation on infection control and dental hygiene. This March, AESIC and ACTA, an academic centre for dental education in the Netherlands, organised a conference in Amsterdam with the theme Harmonising dental infection prevention guidelines in Europe. During the conference, steps were taken towards establishing a collaborative working group to collect and share dental infection control guidelines in Europe. Dental Tribune Netherlands spoke with Dr Hans de Soet, microbiologist and expert in infection control at ACTA, and chairperson of the event.

Dental Tribune Netherlands: Dr De Soet, what are your thoughts on the conference in Amsterdam?

Dr Hans de Soet: It was a successful conference. At last year’s European Oral Microbiology workshop, we sensed a need for harmonisation in dental hygiene and infection control. Apparently, there are substantial regulation differences among European countries: in some, these regulations are set up as laws, while in other countries they are merely stipulations. The way in which these guidelines are enforced also varies.

I did not observe any fundamental differences. There are, of course, some minor variations. For example, in some countries gloves can be used more than once. Generally, though, the regulations are quite similar. In Scandinavia, dentists are obligated to record their activities concerning infection control according to 10 stipulations. Each requires a separate record, such as “equipment validation”.

In Scandinavia, dentists are obligated to record their activities concerning infection control according to 10 stipulations. Each requires a separate record, such as “equipment validation”. This seems practical and logical, but is not the case everywhere. For example, in some countries gloves can be used more than once. Generally, though, the regulations are quite similar.

In 2009, a group of microbiologists established the Association for European Safety & Infection Control in Dentistry (AESIC), an organisation that promotes European collaboration for shared knowledge and uniform legislation on infection control and dental hygiene. This March, AESIC and ACTA, an academic centre for dental education in the Netherlands, organised a conference in Amsterdam with the theme Harmonising dental infection prevention guidelines in Europe. During the conference, steps were taken towards establishing a collaborative working group to collect and share dental infection control guidelines in Europe. Dental Tribune Netherlands spoke with Dr Hans de Soet, microbiologist and expert in infection control at ACTA, and chairperson of the event.

Dental Tribune Netherlands: Dr De Soet, what are your thoughts on the conference in Amsterdam?

Dr Hans de Soet: It was a successful conference. At last year’s European Oral Microbiology workshop, we sensed a need for harmonisation in dental hygiene and infection control. Apparently, there are substantial regulation differences among European countries: in some, these regulations are set up as laws, while in other countries they are merely stipulations. The way in which these guidelines are enforced also varies.

I did not observe any fundamental differences. There are, of course, some minor variations. For example, in some countries gloves can be used more than once. Generally, though, the regulations are quite similar. In Scandinavia, dentists are obligated to record their activities concerning infection control according to 10 stipulations. Each requires a separate record, such as “equipment validation”.

In Scandinavia, dentists are obligated to record their activities concerning infection control according to 10 stipulations. Each requires a separate record, such as “equipment validation”. This seems practical and logical, but is not the case everywhere. For example, in some countries gloves can be used more than once. Generally, though, the regulations are quite similar.
The goal of the conference was to establish a European working group. What activities will this group undertake?

The working group is not primarily concerned with formulating European regulations. We are mainly interested in sharing our thoughts on patient safety. We can all benefit from sharing our knowledge at an academic level and performing research using data from all over Europe. The ultimate goal is to give infection control the place it deserves in academic research programs.

Once we have finished mapping the current state of infection control, we can determine whether it is possible to formulate regulations at a European level.

The situation in the UK is not ideal either, in that all local authorities perform their own research and establish their own regulations, owing to apparent political considerations under-regulations, owing to apparent political considerations. In this case, political considerations undermine efficiency, which stresses the need for a European organization like AESIC, which does not serve political goals, but focuses on science.

Infection control is currently a hot topic in Dutch dentistry, owing to the strict enforcement of equally strict regulations. How does this compare with the rest of Europe?

By comparison, our regulations are well developed; they are extensive, clear and realistic. Although some dentists regard them as too strict, they are actually more flexible than those of some other countries. For instance, Dutch dentists are not obligated to publish an annual record of their activities with reference to patient safety. Dutch regulations are also unique in that they are developed by an independent party.

Regulations also require enforcement. How does foreign regulation enforcement differ from that in the Netherlands?

The Dutch situation is very good, partly because of its well-functioning government-owned monitoring agency. The England monitoring agency is of high standard as well, especially compared with many other European countries. Often, patients need to file a personal complaint before any action is taken against a dental practitioner.

Once we have finished mapping the current state of infection control, we can determine whether it is possible to formulate regulations at a European level.

The working group is not primarily concerned with formulating European regulations. We are mainly interested in sharing our thoughts on patient safety. We can all benefit from sharing our knowledge at an academic level and performing research using data from all over Europe. The ultimate goal is to give infection control the place it deserves in academic research programs.

You indicated that infection control in the Netherlands is of a relatively high standard. Does this mean that other countries could benefit more from a European working group?

There is room for improvement for us as well. The regulations for infection control in dentistry are largely based on general medicine, which means that some regulations may be too strict. We lack empirical evidence of the risk of infections like Legionella and MRSA.

Therefore, it is difficult to determine whether and how the regulations should be adjusted: should they be stricter or more flexible? There is some data about MRSA in general medicine, but not in dentistry. Now, we could wait until something goes wrong, or we could cooperate with other dental professionals for whom MRSA is increasingly problematic.

AESIC was set up in 2010. What has the organization accomplished so far?

Eighteen months is too short for any tangible accomplishments, but we have achieved a wonderful goal in bringing together so many academicians and commercial representatives. The latter are of crucial importance too; we can do all this research, but it’s the manufacturers that have to produce the desired devices and products.

AESIC aims to anticipate new developments, enabling it to steer manufacturers in a certain direction. For instance, few dental chairs are equipped with an automatic drainage cleaning system. Were such a system to be made compulsory, manufacturers should be able to anticipate this at an early stage.

Dental manufacturers are probably hoping for very strict regulations on infection control, thus forcing dental practitioners to make large investments in this field.

Some companies may think that, but those that join AESIC adopt a responsible stance, demonstrating their passion for dentistry and their willingness to achieve optimal infection control. We sincerely value their contribution. Aside from that, conferences like this one need funding and we need commercial parties in that respect as well.

High how close are you to establishing a European working group?

We have now inventoried the main similarities and differences between the regulations in European countries. In doing so, a practical problem immediately became apparent: The Netherlands is the only country that has translated its regulations into English. Also, they are often split up into various reports, rules and regulations. We have now decided to take one set of regulations as starting point and compare it with those of other countries. This could be done by students.

Another important project is to develop an educational curriculum that clearly states our minimum requirements for infection control knowledge for all dental professionals. We will also investigate how to get funding for collaborative research in our focus area.

The goal of the conference was to establish a European working group. What activities will this group undertake?

The working group is not primarily concerned with formulating European regulations. We are mainly interested in sharing our thoughts on patient safety. We can all benefit from sharing our knowledge at an academic level and performing research using data from all over Europe. The ultimate goal is to give infection control the place it deserves in academic research programs.

Once we have finished mapping the current state of infection control, we can determine whether it is possible to formulate regulations at a European level.
Protein contamination in the dental surgery

Peter Bacon discusses surface cleaning and disinfection

As the dental profession is only too well aware, cleaning and disinfection processes within the dental practice are of paramount concern, not only in relation to CQC and HTM01-05 compliance, but also with regard to staff and patient well-being – which the compliance guidelines are there to ensure and protect.

Protein contamination in the dental surgery is an obvious area for serious concern, since residual soiling on surfaces can harbour pathogens.

Blood has the potential to carry and transmit viruses such as HIV, HBV and HCV. The risk of transmission of communicable blood-borne viruses might be considered to come only from high risk areas such as accidental sharps injuries, but greater research and advances in the sphere of microbiology now provides evidence that many micro-organisms can survive on a variety of surfaces, making the danger of disease transmission from contaminated surgery surfaces or equipment a genuine threat to patients and staff. In addition, an increasingly mobile population including greatly increased economic migration has resulted in a resurgence of diseases such as TB, which are associated with overcrowding and poor standards of general health.

In order to overcome the potential issue of surface decontamination and the prevention of transmission of pathogens, dental practices must have rigorous infection control policies which establish clear protocols for cleaning and disinfection and document the practitioner’s adherence to the procedures laid down.

Decontamination is defined as a reduction in the risk of contamination to a level that is acceptable, ie controlling the number of micro-organisms in an environment. Within a dental surgery, both cleaning and disinfection are required but although the terms are often confused they are not the same thing. Cleaning involves physical removal of soil matter from surfaces while disinfection is inactivation of pathogens. Cleaning must take place before disinfection to ensure that bacteria, proteins and other contaminants are removed from surfaces before disinfection takes place, unless a suitable single stage process is in use.

Decontamination of a specific area is aided by the use of commercially available products and many of these agents are based on alcohol. In dentistry, alcohol has been widely adopted as a disinfectant for many years and its efficacy in this role is well documented.

The widespread use of alcohol as a disinfectant in dentistry has been largely driven by its low cost and quick drying properties, where its rapid drying is perceived as beneficial in achieving a short turn-round time between patients. However, rapid evaporation of alcohol based products means that by the time the treatment of a surface has been completed, most of the alcohol has evaporated from the wipe or surface, so the areas wiped at the end of the process will be neither cleaned nor effectively disinfect.

A fact frequently overlooked, but one that is highlighted by the HTM 01-05 guidelines, is that alcohol is not effective as a cleaner, particularly where protein based soils are present as is likely to be the case in medical and dental environments.

Section 6.57 of HTM01-05 states: Evidence suggests that the use of commercial bactericidal cleaning agents and wipes is helpful in maintaining cleanliness and may also reduce viral contamination of surfaces. Care should be taken in the use of alcohol wipes, which – though effective against viruses on clean surfaces - may fix protein and biofilm. However, the careful use of water with suitable detergents, including those CE marked for clinical use, is satisfactory where the surface is dried after such cleaning.

NOTE: Alcohol has been shown to bind blood and protein to stainless steel. The use of alcohol with dental instruments should therefore be avoided.

Some of the limitations of alcohol are as follows:

- Protein fixation
- Materials incompatibility (particularly PMMA)
- Rapid evaporation
- Flammability

If we consider the ideal properties of a combined disinfectant and cleaning agent, most “experts” would agree that the following would be a reasonable, though not exhaustive list:

- Excellent cleaning action
- Broad spectrum microbicidal action – some microbes present challenges than others, for example TB
- Non-toxic – or at least selectively toxic
- Short contact time – driven by time pressure and the need for short turnaround between patients
- Stability – some agents have a very short shelf life
- Ease of use – no complicated making-up requirements
- Competitively priced

As stated in HTM 01-05, alcohol does not clean effectively but will disinfect clean surfaces, therefore, a two-stage process is required when using an alcohol based disinfectant.

1. Clean to remove physical soil ing
2. Disinfect with alcohol to inactiv ate pathogens

This process however is less than desirable from an operational point of view due to the additional time required to carry out two procedures between each patient as well as the additional cost of buying two products and the additional inventory required.

Therefore we have seen in recent years a growing demand for water based combined cleaners and disinfectants. The ideal solution is a carefully formulated water based product that can both remove soiling and disinfect in a single process, greatly reducing the time taken and providing an effective solution.

The properties required in such a combined cleaner and disinfectant would be:

- Broad spectrum efficacy
- Wide surface compatibility
- Effective cleaning
- CE marked Class 2a (required if a product is to be used to disinfect medical devices)
- pH neutral
- Two-year shelf life
- Low residue
- Supplied in all formats (ready to use, concentrate and wipes)

The ability to deliver all the required features and their associated benefits in a single product will answer the demands of the market and provide a means of ensuring complete compliance with current guidelines.

About the author

Peter Bacon is Technical Director at Dentisan www.dentisan.co.uk

To request your FREE sample, view the BioCleanse Ultra video at www.dentisan.co.uk

Follow us on @DentisanLtd
Like us on Dentisan Ltd